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Abstract—In this paper, the KALDI ASR engine adapted to 

Italian is described and the results obtained so far on some children 

speech ASR experiments are reported. We give a brief overview of 

KALDI, we describe in detail its DNN implementation, we introduce 

the acoustic model (AM) training procedure and we end describing 

some experiments on Italian children speech together with the final 

test procedures. 
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I. INTRODUCTION 

During the last few years, many different Automatic 
Speech Recognition (ASR) frameworks have been developed 
for research purposes and, nowadays, various open-source 
ASR toolkits are available to research laboratories. Systems 
such as HTK [1], SONIC [2], [3], SPHINX [4], [5], RWTH 
[6], JULIUS [7], KALDI [8], the more recent ASR framework 
SIMON [9], and the relatively new system called BAVIECA 
[10] are a simple and probably not exhaustive list. 

Deep Neural Networks (DNNs) are the latest hot topic in 
speech recognition. Since around 2010 many papers have been 
published in this area, and some of the largest companies (e.g. 
Google, Microsoft) are starting to use DNNs in their 
production systems. 

Indeed new systems such as KALDI [8] demonstrated the 
effectiveness of easily incorporate “Deep Neural Network” 
(DNN) techniques [11] in order to improve the recognition 
performance in almost all recognition tasks. 

In this paper, the KALDI ASR engine adapted to Italian is 
described and the results obtained so far on some children 
speech ASR experiments are reported. We give a brief 
overview of KALDI, and in particular of its DNN 
implementation, we introduce the acoustic model  (AM) training 
procedure and we end describing some experiments on Italian 
children speech together with the final test procedures. 

II. KALDI  

As written in his official web site 
(http://KALDI.sourceforge.net), the KALDI ASR environment 
should be mainly taken into consideration for the following 
simple reasons: 

 it’s  “easy  to  use”  (once  you  learn  the  basics,  and 

assuming you understand the underlying science) 

 it’s “easy to extend and modify” 

 it’s “redistributable”: unrestrictive license, community 

project 

 if your stuff works or is interesting, the KALDI team is 

open to including it and your example scripts in our 

central repository: more citation, as others build on it. 

 
In particular, even if KALDI is similar in aims and scope to 

HTK, and the goal is still to have modern and flexible code, 
written in C++, that is easy to modify and extend, the important 
features that represent the main reasons to use KALDI versus 
other toolkits include: 

 code-level  integration  with  Finite  State  Transducers 

(FSTs) 

o compiling against the OpenFst toolkit (using it as a 

library); 

 extensive linear algebra support 

o including a matrix library that wraps standard 

o BLAS and LAPACK routines; 

 extensible design 

o providing, as far as possible, algorithms in the most 

generic form possible; for instance, decoders are 

templated on an object that provides a score indexed 

by a (frame, fst- input-symbol) tuple, this meaning 

that the decoder could work from any suitable source 

of scores, such as a neural net;  

 open license 

o the code is licensed under Apache 2.0, which is one 

of the least restrictive licenses available; 

 complete recipes 

o making  available   complete   recipes   for building   

speech   recognition   systems,   that work from widely 

available databases such as those  provided  by  the  

ELRA  or  Linguistic Data Consortium (LDC). 

 
It should be noted that the goal of releasing complete recipes 

is an important aspect of KALDI. Since the code is publicly 
available under a license that permits modifications and re-
release, this encourages people to release their code, along with 
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their script directories, in a similar format to KALDI 's own 
example script. 

III. DEEP NEURAL NETWORKS IN KALDI1 

An active area of research like Deep Neural Networks 
(DNNs) is difficult for a toolkit like KALDI to be well 
supported, because the state of the art changes constantly, 
which means code changes are required to keep up, and 
architectural decisions may need to be rethought. 

KALDI currently contains two parallel implementations for 
DNN training. Both of these recipes are deep neural networks 
where the last (output) layer is a softmax layer whose output 
dimension equals the number of context-dependent states in the 
system (typically several thousand). The neural net is trained 
to predict the posterior probability of each context-dependent 
state. During decoding the output probabilities are divided by 
the prior probability of each state to form a “pseudo- 
likelihood” that is used in place of the state emission 
probabilities in the HMM 

The first implementation is as described in [12, 13]. This 
implementation supports Restricted Boltzmann Machines 
(RBM) pre-training [14, 15, 16], stochastic gradient descent 
training using NVidia Graphics Processing Units (GPUs), and 
discriminative training such as boosted MMI [17] and state- 
level minimum Bayes risk (sMBR) [18, 19]. 

The second implementation of DNNs in KALDI [20, 21, 
22] was originally written to support parallel training on 
multiple CPUs, although it has now been extended to support 
parallel GPU-based training and it does not support 
discriminative training. 

One is located in code sub-directories nnet/2 and nnetbin/, 
and is primarily maintained by Karel Vesely. The other is 
located in code subdirectories nnet2/ and nnet2bin/, and is 
primarily maintained by Daniel Povey (this code was 
originally based on an earlier version of Karel's code, but it has 
been extensively rewritten). Neither codebase is more 
“official” than the other. Both are still being developed in 
parallel. 

In the example directories (referring to the HKUST 
Mandarin Telephone Speech, Resource Management, 
Switchboard, Timit, and Wall Street Journal corpora) such 
as egs/hkust/s5b, egs/rm/s5, egs/swbd/s5, egs/timit/s5/, and 
egs/wsj/s5/, neural net example scripts can be found. Karel's 
example scripts can be found in local/run_dnn.sh or 
local/run_nnet.sh, and Dan's example scripts can be found 
in local/run_nnet2.sh. Before running those scripts, the first 
stages of “run.sh” in those directories must be run in order to 
build the systems used for alignment. 

Regarding which of the two setups you should use: 

 Karel's setup (nnet1) generally gives somewhat better 
results but it only supports training on a single GPU 

                                                           
1 Most of the text in this section is taken from “Deep Neural 

Networks in Kaldi” (http://kaldi.sourceforge.net/dnn.html) 

with permission from the Author (Daniel Povey). 
2 See the code at: https://svn.code.sf.net/p/kaldi/code/trunk/egs 

card, or on a single CPU which is very slow. 

 Dan's setup generally gives slightly worse results but 
is  more flexible in how you can train: it supports using  
multiple GPUs, or multiple CPUs each with multiple 
threads. Multiple GPUs is the recommended setup. 
They don't have to all be on the same machine. 

 

The reasons for the performance difference is still unclear, 
as there are many differences in the recipes used. For example, 
Karel's setup uses pre-training but Dan's setup does not; Karel's 
setup uses early stopping using a validation set but Dan's setup 
uses a fixed number of epochs and averages the parameters over 
the last few epochs of training. Most other details of the training 
(nonlinearity types, learning rate schedules, etc.) also differ. 

A. Karel's DNN training implementation 

The implementation of DNNs from Karel Vesely [12, 
13] uses the following techniques: 

 layer-wise pre-training based on RBMs (Restricted 

Boltzmann Machines) 

 per-frame cross-entropy training 

 sequence-discriminative  training,  using  lattice 

framework,  optimizing  sMBR   criterion   (State 

Minimum Bayes Risk) 
 

The systems are built on top of LDA-MLLT-fMLLR3 

features (see [23] for all acronyms references) obtained 
from auxiliary GMM (Gaussian Mixture Model) models. 
Whole DNN training is running in a single GPU using 
CUDA (Compute Unified Device Architecture, the parallel 
computing architecture created by NVidiaTM), however 
cudamatrix library is designed to also run on machines 
without a GPU, but this tends to be more than 10x slower. 

The script for standard databases such wsj is located 
at: “egs/wsj/s5/local/run_dnn.sh” and it is split into several 
stages. At first the 40-dimensional features (MFCC, LDA, 
MLLT, fMLLR with CMN) are stored to disk in order to 
simplify the training scripts. 

1) Pre-training Phases 

The implementation of layer-wise RBM (Restricted 
Boltzmann Machine) pre-training is following the document 
http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf [24]. 
The training algorithm is Contrastive Divergence with 1-
step  of  Markov  Chain  Monte  Carlo  sampling  (CD-1).  
The hyper-parameters of the recipe were tuned on the 100 
hours Switchboard subset. If smaller databases are used, 
mainly the number of epochs N needs to be set to 100 
hours/set_size. The training is unsupervised, so it is 
sufficient to provide single data-directory with input 
features. 

When training the RBM with Gaussian-Bernoulli units, 
there is a high risk of weight-explosion, especially with larger 
learning rates and thousands of hidden neurons. To avoid 

3 LDA: Linear Discriminant Analysis, MLTT: Maximum 

Likelihood Linear Transform, fMLLR: feature space 

Maximum Likelihood Linear Regression. 
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weight-explosion a mechanism, which compares the variance 
of training data with the variance of the reconstruction data in 
a minibatch has been implemented. If the variance of 
reconstruction is >2x larger, the weights are shrinked and the 
learning rate is temporarily reduced. 

2) Frame-level cross-entropy training. 

In this phase a DNN which classifies frames into triphone- 
states is trained. This is done by mini-batch Stochastic Gradient 
Descent. The default is to use Sigmoid hidden units, Softmax 
output units and fully connected layers AffineTransform. The 
learning rate by default is 0.008, size of mini-batch 256; no 
momentum or regularization is used. The optimal learning-rate 
differs with type of hidden units, the value for sigmoid  is 
0.008, for tanh 0.00001. 

The input_transform and the pre-trained DBN (i.e. Deep 
Belief Network, stack of RBMs) is passed into to the script 
using the options '–input-transform' and '–dbn', only the output 
layer is initialized randomly. An early stopping criterium is 
used to prevent over-fitting, for this the objective function on 
the cross-validation set (i.e. held-out set) is measured, therefore 
two pairs of feature-alignment dirs are needed to perform the 
supervised training. 

A good summary paper on DNN training is “Deep Neural 
Networks for Acoustic Modeling in Speech Recognition: The 
Shared Views of Four Research Groups” by Geoffrey Hinton 
et al. [13]. 

3) Sequence-discriminative training. 

In this phase, the neural networks is trained to classify 
correctly the whole sentences, which is closer to the general 
ASR objective than frame-level training. The objective of 
sequence-discriminative training is to maximize the expected 
accuracy of state labels derived from reference transcriptions, 
and lattice framework to represent competing hypothesis is 
used. The training is done by Stochastic Gradient Descent 
(SGD) with per-utterance updates, low learning rate 1e-5 
which is kept constant is used and 3-5 epochs are done. Faster 
convergence when re-generating lattices after 1st epoch are 
observed. 

MMI, BMMI, MPE and sMBR4 training are all supported 
(see [23] for all acronyms references). In sMBR optimization, 
silence frames are excluded from accumulating approximate 
accuracies5 [25]. 

B. Dan's DNN training implementation 

For the full documentation that covers Dan Povey's version 
of the deep neural network code in KALDI one could refer 
to the following web link [20] and to the following papers 
[21, 22]. 

In its last implementation stage, as indicated in [22] 
where the Dan’s DNN is used on a speech recognition setup 
called Fisher English, which is English language 
conversational telephone speech, sampled at 8 kHz, for a 

                                                           
4 MI: Maximum Mutual Information; BMMI: Boosted MMI; 

MPE: Minimum Phone Error; sMBR: State-level Minimum 

Bayes Risk. 

total amount of training data of 1600 hours, the “… DNN 
system uses speaker adapted features from a GMM system, 
so it requires a first pass of GMM decoding and adaptation. 
…”. 

“… The GMM system is based on MFCC features, 
spliced across ±3 frames and processed with LDA+MLLT 
to 40- dimensional features, then adapted with feature-space 
MLLR (fMLLR) in both training and test time. See [8] for 
an explanation of these terms and the normal system build 
steps. All these systems used the same phonetic context 
decision tree with 7880 context-dependent states; the GMM 
system had 300000 Gaussians in total. ...” 

“… The 40-dimensional features from GMM are spliced 
across ±4 frames of context and used as input to the DNN. 
DNN is a p-norm DNN [21] with 5 hidden layers and p-
norm (input, output) dimensions of (5000, 500) respectively, 
i.e. the nonlinearity reduces the dimension tenfold. In this 
framework 15000 “sub-classes” are used (see Section C.3 of 
[22] for explanation), and the number of parameters is 19.3 
million. The system is trained for 12 epochs with learning 
rate varying from 0.08 to 0.008, trained with 8 parallel 
jobs with online natural gradient SGD (NG-SGD) and, for 
this DNN system, K=400000 samples per outer iteration 
for each machine are used for training. …”. 

As for the TIMIT recipe (s5) the Dan’s DNN is much 
more simpler and adopts a classic Hybrid Training and 
Decoding framework using a simple deep network with tanh 
nonlinearities. Moreover, also system combination using 
minimum Bayes risk decoding is used, and in this case a 
lattice combination is used to create a union of lattices 
normalized by removing the total forward cost from them 
and using the resulting lattice as input the last decoding step. 

IV. KALDI ON ITALIAN 

In this section, the adaptation of KALDI to Italian, 
starting from the TIMIT recipe, is described and the results 
obtained so far on some children speech ASR experiments are 
reported (see Table 1). 

In the experiments here described the Italian FBK 
ChildIt Corpus [26] was taken into consideration. This is a 
corpus that counts almost 10 hours of speech from 171 
children; each child has read about 60 children literature 
sentences; the audio was sampled at 16 kHz, 16 bit linear, 
using a Shure SM10A head- worn mic. 

Various experiments have been carried out in many 
configurations and in all cases, training and test materials have 
been kept separate. In all the experiments here described, the 
standard MFCC features were considered, setting reasonable 
defaults, but other options could be exploited in the future. The 
results, shown in Table 1, are the best obtained with KALDI on 
the CHILDIT corpus and they are the best obtained so far in 
comparison with those obtained by similar experiments reported 
in the literature [26, 27, 28, 29, 30, 31, 32]. 

5 More detailed description is at: 

http://www.danielpovey.com/files/2013_interspeech_dnn.pdf 



Phone Error Rate (PER) was considered for computing the 
score of the recognition process. The PER is defined as the sum 
of the deletion (DEL), substitution (SUB) and insertion (INS) 
percentage of phonemes in the ASR outcome text with respect 
to a reference transcription. PCR and SER refers to the Phone 
Correct Rate and Sentence Error Rate respectively. 

Ideally, a hand-labelled reference would have been 
preferred, because it would have been corrected at the phonetic 
level to take into account of children’s speech pronunciation 
mistakes. Since this was not available for the CHILDIT corpus, 

the automatic phonetic sequences obtained by a Viterbi 
alignment of the word-level orthographic transcription have 
been used. The reference test transcriptions were created using 
a SONIC-based aligner using a previously trained children 
speech Italian acoustic model [28]. This method was chosen 
because it allowed for automatically selecting the best 
pronunciation for each word in the training data among the 
alternative choices available in the 400,000-word Italian 
lexicon available. 

 

TABLE 1. Preliminary results obtained in the experiments executed on the CHILDIT corpus in various configurations adapting 
the KALDI’s TIMIT-recipe scripts (see text for the definition of all keywords). 

 

MonoPhone 

Delta + Delta-Deltas 

LDS + MLLT 

LDA + MLLT + SAT 

sgmm2_4: SGMM2 

MMI + SGMM2 (iteration n.1) 

MMI + SGMM2 (iteration n.2) 

MMI + SGMM2 (iteration n.3) 

MMI + SGMM2 (iteration n.4) 

DNN Hybrid (Dan’s) 

SGMM2 + DNN Hybrid (Dan’s) (it. 1) 

SGMM2 + DNN Hybrid (Dan’s) (it. 2) 

SGMM2 + DNN Hybrid (Dan’s) (it. 3) 

SGMM2 + DNN Hybrid (Dan’s) (it. 4) 

DNN Hybrid (Karel’s) 

DNN Hybrid (Karel’s), sMBR training (it. 1) 

DNN Hybrid (Karel’s), sMBR training (it. 6) 

 

The results shown in Table 1 refer to the various training 
and decoding experiments (see [23] for all acronyms 
references): 

 MonoPhone (mono); 

 Deltas + Delta-Deltas (tri1); 

 LDA + MLLT (tri2); 

 LDA + MLLT + SAT (tri3); 

 SGMM2 (sgmm2_4); 

 MMI + SGMM2 [33] (sgmm2_4_mmi_b0.1-4); 

 Dan’s Hybrid DNN (tri4-nnet), 

 system combination, that is Dan’s DNN + SGMM 

(combine_2_1-4); 

 Karel’s Hybrid DNN (dnn4_pretrain-dbn_dnn); 

 system combination that is Karel’s DNN + sMBR 

(dnn4_pretrain-dbn_dnn_1-6). 
 

In the Table: 

 SAT refers to the Speaker Adapted Training (SAT), i.e. 
train on fMLLR-adapted features. It can be done on top 
of either LDA+MLLT,  or delta and delta-delta 
features. If there are no transforms supplied in the 
alignment directory, it will estimate transforms itself 

before building the tree (and in any case, it estimates 
transforms a number of times during training). 

 SGMM2 refers to Semi-supervised training of 
Gaussian Mixture Models [33] with speaker vectors. 
This training would normally be called on top of 
fMLLR features obtained from a conventional system, 
but it also works on top of any type of speaker-
independent features (based on deltas+delta-deltas or 
LDA+MLLT). 

On this difficult phonetic ASR task, Karel’s DNN looks 
slightly better than Dan’s DNN and it outperforms all other 
non-DNN configurations. 

V. CONCLUSIONS 

At its early stage, the KALDI toolkit supported modeling 
of context-dependent phones of arbitrary context lengths, 
all commonly used techniques that can be estimated using 
maximum likelihood, and almost all adaptation techniques 
available in the ASR literature. At present, it also supports 
the recently proposed Semi-supervised Gaussian Mixture 
Model (SGMMs) [33, 34], discriminative training, and the 
very promising DNN hybrid training and decoding [12, 13, 
20, 21, 22]. Moreover, developers are working on using large 



language models in the FST framework, and the 
development of KALDI is continuing. 

The adaptation of KALDI to Italian, and in particular to 
the ChildIt corpus, was indeed quite straightforward, and 
results are truly exceptional with respect to those previously 
obtained on the same data. Indeed, this is mainly because 
all the very last ASR techniques, including DNNs, could be 
easily implemented by adapting to Italian the already 
available downloadable scripts written by a quite large 
number of various developers around the world on a similar 
task for English. 
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