
A KALDI-DNN-based ASR system for Italian
Experiments on Children Speech

Piero Cosi

Istituto di Scienze e Tecnologie della Cognizione

Consiglio Nazionale delle Ricerche

Unità Organizzativa di Supporto di Padova - Italy

piero.cosi@pd.istc.cnr.it

Abstract—In this paper, the KALDI ASR engine adapted to

Italian is described and the results obtained so far on some children

speech ASR experiments are reported. We give a brief overview of

KALDI, we describe in detail its DNN implementation, we introduce

the acoustic model (AM) training procedure and we end describing

some experiments on Italian children speech together with the final

test procedures.

Keywords— DNN, Children Speech, ASR

I. INTRODUCTION

During the last few years, many different Automatic
Speech Recognition (ASR) frameworks have been developed
for research purposes and, nowadays, various open-source
ASR toolkits are available to research laboratories. Systems
such as HTK [1], SONIC [2], [3], SPHINX [4], [5], RWTH
[6], JULIUS [7], KALDI [8], the more recent ASR framework
SIMON [9], and the relatively new system called BAVIECA
[10] are a simple and probably not exhaustive list.

Deep Neural Networks (DNNs) are the latest hot topic in
speech recognition. Since around 2010 many papers have been
published in this area, and some of the largest companies (e.g.
Google, Microsoft) are starting to use DNNs in their
production systems.

Indeed new systems such as KALDI [8] demonstrated the
effectiveness of easily incorporate “Deep Neural Network”
(DNN) techniques [11] in order to improve the recognition
performance in almost all recognition tasks.

In this paper, the KALDI ASR engine adapted to Italian is
described and the results obtained so far on some children
speech ASR experiments are reported. We give a brief
overview of KALDI, and in particular of its DNN
implementation, we introduce the acoustic model (AM) training
procedure and we end describing some experiments on Italian
children speech together with the final test procedures.

II. KALDI

As written in his official web site
(http://KALDI.sourceforge.net), the KALDI ASR environment
should be mainly taken into consideration for the following
simple reasons:

 it’s “easy to use” (once you learn the basics, and

assuming you understand the underlying science)

 it’s “easy to extend and modify”

 it’s “redistributable”: unrestrictive license, community

project

 if your stuff works or is interesting, the KALDI team is

open to including it and your example scripts in our

central repository: more citation, as others build on it.

In particular, even if KALDI is similar in aims and scope to

HTK, and the goal is still to have modern and flexible code,
written in C++, that is easy to modify and extend, the important
features that represent the main reasons to use KALDI versus
other toolkits include:

 code-level integration with Finite State Transducers

(FSTs)

o compiling against the OpenFst toolkit (using it as a

library);

 extensive linear algebra support

o including a matrix library that wraps standard

o BLAS and LAPACK routines;

 extensible design

o providing, as far as possible, algorithms in the most

generic form possible; for instance, decoders are

templated on an object that provides a score indexed

by a (frame, fst- input-symbol) tuple, this meaning

that the decoder could work from any suitable source

of scores, such as a neural net;

 open license

o the code is licensed under Apache 2.0, which is one

of the least restrictive licenses available;

 complete recipes

o making available complete recipes for building

speech recognition systems, that work from widely

available databases such as those provided by the

ELRA or Linguistic Data Consortium (LDC).

It should be noted that the goal of releasing complete recipes

is an important aspect of KALDI. Since the code is publicly
available under a license that permits modifications and re-
release, this encourages people to release their code, along with

mailto:piero.cosi@pd.istc.cnr.it
mailto:piero.cosi@pd.istc.cnr.it

their script directories, in a similar format to KALDI 's own
example script.

III. DEEP NEURAL NETWORKS IN KALDI1

An active area of research like Deep Neural Networks
(DNNs) is difficult for a toolkit like KALDI to be well
supported, because the state of the art changes constantly,
which means code changes are required to keep up, and
architectural decisions may need to be rethought.

KALDI currently contains two parallel implementations for
DNN training. Both of these recipes are deep neural networks
where the last (output) layer is a softmax layer whose output
dimension equals the number of context-dependent states in the
system (typically several thousand). The neural net is trained
to predict the posterior probability of each context-dependent
state. During decoding the output probabilities are divided by
the prior probability of each state to form a “pseudo-
likelihood” that is used in place of the state emission
probabilities in the HMM

The first implementation is as described in [12, 13]. This
implementation supports Restricted Boltzmann Machines
(RBM) pre-training [14, 15, 16], stochastic gradient descent
training using NVidia Graphics Processing Units (GPUs), and
discriminative training such as boosted MMI [17] and state-
level minimum Bayes risk (sMBR) [18, 19].

The second implementation of DNNs in KALDI [20, 21,
22] was originally written to support parallel training on
multiple CPUs, although it has now been extended to support
parallel GPU-based training and it does not support
discriminative training.

One is located in code sub-directories nnet/2 and nnetbin/,
and is primarily maintained by Karel Vesely. The other is
located in code subdirectories nnet2/ and nnet2bin/, and is
primarily maintained by Daniel Povey (this code was
originally based on an earlier version of Karel's code, but it has
been extensively rewritten). Neither codebase is more
“official” than the other. Both are still being developed in
parallel.

In the example directories (referring to the HKUST
Mandarin Telephone Speech, Resource Management,
Switchboard, Timit, and Wall Street Journal corpora) such
as egs/hkust/s5b, egs/rm/s5, egs/swbd/s5, egs/timit/s5/, and
egs/wsj/s5/, neural net example scripts can be found. Karel's
example scripts can be found in local/run_dnn.sh or
local/run_nnet.sh, and Dan's example scripts can be found
in local/run_nnet2.sh. Before running those scripts, the first
stages of “run.sh” in those directories must be run in order to
build the systems used for alignment.

Regarding which of the two setups you should use:

 Karel's setup (nnet1) generally gives somewhat better
results but it only supports training on a single GPU

1 Most of the text in this section is taken from “Deep Neural

Networks in Kaldi” (http://kaldi.sourceforge.net/dnn.html)

with permission from the Author (Daniel Povey).
2 See the code at: https://svn.code.sf.net/p/kaldi/code/trunk/egs

card, or on a single CPU which is very slow.

 Dan's setup generally gives slightly worse results but
is more flexible in how you can train: it supports using
multiple GPUs, or multiple CPUs each with multiple
threads. Multiple GPUs is the recommended setup.
They don't have to all be on the same machine.

The reasons for the performance difference is still unclear,
as there are many differences in the recipes used. For example,
Karel's setup uses pre-training but Dan's setup does not; Karel's
setup uses early stopping using a validation set but Dan's setup
uses a fixed number of epochs and averages the parameters over
the last few epochs of training. Most other details of the training
(nonlinearity types, learning rate schedules, etc.) also differ.

A. Karel's DNN training implementation

The implementation of DNNs from Karel Vesely [12,
13] uses the following techniques:

 layer-wise pre-training based on RBMs (Restricted

Boltzmann Machines)

 per-frame cross-entropy training

 sequence-discriminative training, using lattice

framework, optimizing sMBR criterion (State

Minimum Bayes Risk)

The systems are built on top of LDA-MLLT-fMLLR3

features (see [23] for all acronyms references) obtained
from auxiliary GMM (Gaussian Mixture Model) models.
Whole DNN training is running in a single GPU using
CUDA (Compute Unified Device Architecture, the parallel
computing architecture created by NVidiaTM), however
cudamatrix library is designed to also run on machines
without a GPU, but this tends to be more than 10x slower.

The script for standard databases such wsj is located
at: “egs/wsj/s5/local/run_dnn.sh” and it is split into several
stages. At first the 40-dimensional features (MFCC, LDA,
MLLT, fMLLR with CMN) are stored to disk in order to
simplify the training scripts.

1) Pre-training Phases

The implementation of layer-wise RBM (Restricted
Boltzmann Machine) pre-training is following the document
http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf [24].
The training algorithm is Contrastive Divergence with 1-
step of Markov Chain Monte Carlo sampling (CD-1).
The hyper-parameters of the recipe were tuned on the 100
hours Switchboard subset. If smaller databases are used,
mainly the number of epochs N needs to be set to 100
hours/set_size. The training is unsupervised, so it is
sufficient to provide single data-directory with input
features.

When training the RBM with Gaussian-Bernoulli units,
there is a high risk of weight-explosion, especially with larger
learning rates and thousands of hidden neurons. To avoid

3 LDA: Linear Discriminant Analysis, MLTT: Maximum

Likelihood Linear Transform, fMLLR: feature space

Maximum Likelihood Linear Regression.

http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

weight-explosion a mechanism, which compares the variance
of training data with the variance of the reconstruction data in
a minibatch has been implemented. If the variance of
reconstruction is >2x larger, the weights are shrinked and the
learning rate is temporarily reduced.

2) Frame-level cross-entropy training.

In this phase a DNN which classifies frames into triphone-
states is trained. This is done by mini-batch Stochastic Gradient
Descent. The default is to use Sigmoid hidden units, Softmax
output units and fully connected layers AffineTransform. The
learning rate by default is 0.008, size of mini-batch 256; no
momentum or regularization is used. The optimal learning-rate
differs with type of hidden units, the value for sigmoid is
0.008, for tanh 0.00001.

The input_transform and the pre-trained DBN (i.e. Deep
Belief Network, stack of RBMs) is passed into to the script
using the options '–input-transform' and '–dbn', only the output
layer is initialized randomly. An early stopping criterium is
used to prevent over-fitting, for this the objective function on
the cross-validation set (i.e. held-out set) is measured, therefore
two pairs of feature-alignment dirs are needed to perform the
supervised training.

A good summary paper on DNN training is “Deep Neural
Networks for Acoustic Modeling in Speech Recognition: The
Shared Views of Four Research Groups” by Geoffrey Hinton
et al. [13].

3) Sequence-discriminative training.

In this phase, the neural networks is trained to classify
correctly the whole sentences, which is closer to the general
ASR objective than frame-level training. The objective of
sequence-discriminative training is to maximize the expected
accuracy of state labels derived from reference transcriptions,
and lattice framework to represent competing hypothesis is
used. The training is done by Stochastic Gradient Descent
(SGD) with per-utterance updates, low learning rate 1e-5
which is kept constant is used and 3-5 epochs are done. Faster
convergence when re-generating lattices after 1st epoch are
observed.

MMI, BMMI, MPE and sMBR4 training are all supported
(see [23] for all acronyms references). In sMBR optimization,
silence frames are excluded from accumulating approximate
accuracies5 [25].

B. Dan's DNN training implementation

For the full documentation that covers Dan Povey's version
of the deep neural network code in KALDI one could refer
to the following web link [20] and to the following papers
[21, 22].

In its last implementation stage, as indicated in [22]
where the Dan’s DNN is used on a speech recognition setup
called Fisher English, which is English language
conversational telephone speech, sampled at 8 kHz, for a

4 MI: Maximum Mutual Information; BMMI: Boosted MMI;

MPE: Minimum Phone Error; sMBR: State-level Minimum

Bayes Risk.

total amount of training data of 1600 hours, the “… DNN
system uses speaker adapted features from a GMM system,
so it requires a first pass of GMM decoding and adaptation.
…”.

“… The GMM system is based on MFCC features,
spliced across ±3 frames and processed with LDA+MLLT
to 40- dimensional features, then adapted with feature-space
MLLR (fMLLR) in both training and test time. See [8] for
an explanation of these terms and the normal system build
steps. All these systems used the same phonetic context
decision tree with 7880 context-dependent states; the GMM
system had 300000 Gaussians in total. ...”

“… The 40-dimensional features from GMM are spliced
across ±4 frames of context and used as input to the DNN.
DNN is a p-norm DNN [21] with 5 hidden layers and p-
norm (input, output) dimensions of (5000, 500) respectively,
i.e. the nonlinearity reduces the dimension tenfold. In this
framework 15000 “sub-classes” are used (see Section C.3 of
[22] for explanation), and the number of parameters is 19.3
million. The system is trained for 12 epochs with learning
rate varying from 0.08 to 0.008, trained with 8 parallel
jobs with online natural gradient SGD (NG-SGD) and, for
this DNN system, K=400000 samples per outer iteration
for each machine are used for training. …”.

As for the TIMIT recipe (s5) the Dan’s DNN is much
more simpler and adopts a classic Hybrid Training and
Decoding framework using a simple deep network with tanh
nonlinearities. Moreover, also system combination using
minimum Bayes risk decoding is used, and in this case a
lattice combination is used to create a union of lattices
normalized by removing the total forward cost from them
and using the resulting lattice as input the last decoding step.

IV. KALDI ON ITALIAN

In this section, the adaptation of KALDI to Italian,
starting from the TIMIT recipe, is described and the results
obtained so far on some children speech ASR experiments are
reported (see Table 1).

In the experiments here described the Italian FBK
ChildIt Corpus [26] was taken into consideration. This is a
corpus that counts almost 10 hours of speech from 171
children; each child has read about 60 children literature
sentences; the audio was sampled at 16 kHz, 16 bit linear,
using a Shure SM10A head- worn mic.

Various experiments have been carried out in many
configurations and in all cases, training and test materials have
been kept separate. In all the experiments here described, the
standard MFCC features were considered, setting reasonable
defaults, but other options could be exploited in the future. The
results, shown in Table 1, are the best obtained with KALDI on
the CHILDIT corpus and they are the best obtained so far in
comparison with those obtained by similar experiments reported
in the literature [26, 27, 28, 29, 30, 31, 32].

5 More detailed description is at:

http://www.danielpovey.com/files/2013_interspeech_dnn.pdf

Phone Error Rate (PER) was considered for computing the
score of the recognition process. The PER is defined as the sum
of the deletion (DEL), substitution (SUB) and insertion (INS)
percentage of phonemes in the ASR outcome text with respect
to a reference transcription. PCR and SER refers to the Phone
Correct Rate and Sentence Error Rate respectively.

Ideally, a hand-labelled reference would have been
preferred, because it would have been corrected at the phonetic
level to take into account of children’s speech pronunciation
mistakes. Since this was not available for the CHILDIT corpus,

the automatic phonetic sequences obtained by a Viterbi
alignment of the word-level orthographic transcription have
been used. The reference test transcriptions were created using
a SONIC-based aligner using a previously trained children
speech Italian acoustic model [28]. This method was chosen
because it allowed for automatically selecting the best
pronunciation for each word in the training data among the
alternative choices available in the 400,000-word Italian
lexicon available.

TABLE 1. Preliminary results obtained in the experiments executed on the CHILDIT corpus in various configurations adapting
the KALDI’s TIMIT-recipe scripts (see text for the definition of all keywords).

MonoPhone

Delta + Delta-Deltas

LDS + MLLT

LDA + MLLT + SAT

sgmm2_4: SGMM2

MMI + SGMM2 (iteration n.1)

MMI + SGMM2 (iteration n.2)

MMI + SGMM2 (iteration n.3)

MMI + SGMM2 (iteration n.4)

DNN Hybrid (Dan’s)

SGMM2 + DNN Hybrid (Dan’s) (it. 1)

SGMM2 + DNN Hybrid (Dan’s) (it. 2)

SGMM2 + DNN Hybrid (Dan’s) (it. 3)

SGMM2 + DNN Hybrid (Dan’s) (it. 4)

DNN Hybrid (Karel’s)

DNN Hybrid (Karel’s), sMBR training (it. 1)

DNN Hybrid (Karel’s), sMBR training (it. 6)

The results shown in Table 1 refer to the various training
and decoding experiments (see [23] for all acronyms
references):

 MonoPhone (mono);

 Deltas + Delta-Deltas (tri1);

 LDA + MLLT (tri2);

 LDA + MLLT + SAT (tri3);

 SGMM2 (sgmm2_4);

 MMI + SGMM2 [33] (sgmm2_4_mmi_b0.1-4);

 Dan’s Hybrid DNN (tri4-nnet),

 system combination, that is Dan’s DNN + SGMM

(combine_2_1-4);

 Karel’s Hybrid DNN (dnn4_pretrain-dbn_dnn);

 system combination that is Karel’s DNN + sMBR

(dnn4_pretrain-dbn_dnn_1-6).

In the Table:

 SAT refers to the Speaker Adapted Training (SAT), i.e.
train on fMLLR-adapted features. It can be done on top
of either LDA+MLLT, or delta and delta-delta
features. If there are no transforms supplied in the
alignment directory, it will estimate transforms itself

before building the tree (and in any case, it estimates
transforms a number of times during training).

 SGMM2 refers to Semi-supervised training of
Gaussian Mixture Models [33] with speaker vectors.
This training would normally be called on top of
fMLLR features obtained from a conventional system,
but it also works on top of any type of speaker-
independent features (based on deltas+delta-deltas or
LDA+MLLT).

On this difficult phonetic ASR task, Karel’s DNN looks
slightly better than Dan’s DNN and it outperforms all other
non-DNN configurations.

V. CONCLUSIONS

At its early stage, the KALDI toolkit supported modeling
of context-dependent phones of arbitrary context lengths,
all commonly used techniques that can be estimated using
maximum likelihood, and almost all adaptation techniques
available in the ASR literature. At present, it also supports
the recently proposed Semi-supervised Gaussian Mixture
Model (SGMMs) [33, 34], discriminative training, and the
very promising DNN hybrid training and decoding [12, 13,
20, 21, 22]. Moreover, developers are working on using large

language models in the FST framework, and the
development of KALDI is continuing.

The adaptation of KALDI to Italian, and in particular to
the ChildIt corpus, was indeed quite straightforward, and
results are truly exceptional with respect to those previously
obtained on the same data. Indeed, this is mainly because
all the very last ASR techniques, including DNNs, could be
easily implemented by adapting to Italian the already
available downloadable scripts written by a quite large
number of various developers around the world on a similar
task for English.

ACKNOWLEDGMENTS

I would like to acknowledge and thank Daniel Povey for
his invaluable work on KALDI, indeed a great ASR
Toolkit, and for his great help and kindness in letting me
use some of the text of KALDI’s web pages describing the
software. Moreover, I would like to acknowledge Karel
Vesely for his great work on his very effective version of
DNN.

REFERENCES

[1] Young S., Evermann G., Gales M., Hain T., Kershaw D., Liu X., Moore
G., Odell J., Ollason D., Povey D., Valtchev V., and Woodland P.,
The HTK Book (for version 3.4). Cambridge Univ. Eng. Dept., 2009.

[2] Pellom B. 2001. "SONIC: The University of Colorado Continuous
Speech Recognizer", Technical Report TR-CSLR-2001-01, Center
for Spoken Language Research, University of Colorado, USA, 2001.

[3] Pellom B. and Hacioglu K. 2003. "Recent Improvements in the CU
SONIC ASR System for Noisy Speech: The SPINE Task", Proc.
ICASSP 2003.

[4] Lee K.F., Hon H.W., and Reddy R. (1990), "An overview of the
SPHINX speech recognition system", in IEEE Transactions on
Acoustics, Speech and Signal Processing 38.1 (1990), 35-45.

[5] Walker W., Lamere P., Kwok P., Raj B., Singh R., Gouvea E., Wolf P.,
and Woelfel J., "Sphinx-4: A flexible Open Source Framework for
Speech Recognition," Sun Microsystems Inc., Technical Report SML1
TR2004-0811, 2004.

[6] Rybach D., Gollan C., Heigold G., Hoffmeister B., Lööf J., Schlüter R.,
and Ney H., "The RWTH Aachen University Open Source Speech
Recognition System," in Proc. Interspeech, 2009, 2111-2114, 2009.

[7] Lee A., Kawahara T., and Shikano K, "JULIUS - an open source real-
time large vocabulary recognition engine", in Proc. of Interspeech
2001, 1691-1694.S, 2001.

[8] Povey D., Ghoshal A. et al., "The KALDI Speech Recognition
Toolkit", in Proc. of ASRU, 2011.

[9] Simon. WEB site: http://www.simon-listens.com.

[10] Bolaños D., "The Bavieca Open-Source Speech Recognition Toolkit",
in Proc. of IEEE Workshop on Spoken Language Technology (SLT),
December 2-5, 2012, Miami, FL, USA, 2012.

[11] Bengio Y., "Learning Deep Architectures for AI", in Foundations and
Trends in Machine Learning, Vol. 2, No. 1 (2009) 1-127.

[12] WEB - Karel’s DNN: http://KALDI.sourceforge.net/dnn1.html

[13] Vesely K., Ghoshal A., Burget L., and Povey D., “Sequence-
Discriminative Training of Deep Neural Networks,” in Proc.
Interspeech 2013.

[14] Hinton G., Deng L., Yu D., Dahl G.E., Abdelrahman M., Jaitly N.,
Senior A., Vanhoucke V., Nguyen P., Sainath T.N., et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared
views of four research groups,” Signal Processing Magazine, IEEE,
vol. 29, no. 6, pp. 82–97, 2012.

[15] Dahl G.E., Dong Yu D., Deng L, and Acero A., “Context-dependent
pre- trained deep neural networks for large-vocabulary speech

recognition,” Audio, Speech, and Language Processing, IEEE
Transactions on , vol. 20, no. 1, pp. 30–42, 2012.

[16] Seide F., Li G., and Yu D., “Conversational speech transcription using
context-dependent deep neural networks,” in Proc. Interspeech, 2011,
pp. 437–440.

[17] Povey D., Kanevsky D., Kingsbury B., Ramabhadran B., Saon G.,
Visweswariah K., “Boosted MMI for Feature and Model Space
Discriminative Training,” in Proc. ICASSP, 2008.

[18] Gibson M. and Hain T., “Hypothesis Spaces For Minimum Bayes Risk
Training In Large Vocabulary Speech Recognition,” in Proc.
Interspeech, 2006.

[19] Povey D. and Kingsbury B., “Evaluation of proposed modifications to
MPE for large scale discriminative training,” in Proc. ICASSP, 2007.

[20] WEB - Dan's-DNN: http://KALDI.sourceforge.net/dnn2.html.

[21] Zhang X, Jan Trmal J., Povey D., Khudanpur S., “Improving Deep
Neural Network Acoustic Models Using Generalized Maxout
Networks,” Proc. ICASSP 2014.

[22] Povey D., Zhang H. and Khudanpur S., Parallel Training of DNNs with
Natural Gradient and Parameter Averaging, (under review as a
conference paper at ICLR 2015).

[23] Rath S.P., Povey D., Vesely K. and Cernocky J., Improved feature
processing for Deep Neural Networks, Interspeech 2013, 109-113.

[24] Hinton G., A Practical Guide to Training Restricted Boltzmann
Machines, UTML TR 2010:003, Momentum, 9:1, 2010.

[25] Vesely K., Ghoshal A., Burget L. and Povey D., Sequence-
Discriminative Training of Deep Neural Networks, Interspeech 2013,
2345-2349.

[26] Gerosa M., Giuliani D. and Brugnara F., "Acoustic Variability and
automatic recognition of children's speech", Speech Communication,
Vol. 49, 2007.

[27] Giuliani D. and Gerosa M. 2003. “Investigating Recognition of
Children’s Speech”, Proc. ICASSP, Hong Kong, 2003.

[28] Cosi P. & Pellom B., “Italian Children’s Speech Recognition For
Advanced Interactive Literacy Tutors”, in Proc. of Interspeech 2005,
Lisbon, Portugal, 2201-2204, 2005.

[29] Cosi, P., “Recent Advances in Sonic Italian Children’s Speech
Recognition for Interactive Literacy Tutors”, in Proc. of 1st Workshop
On Child, Computer and Interaction (WOCCI), Chania, Greece, 2008/.

[30] Cosi, P., “On the Development of Matched and Mismatched Italian
Children’s Speech Recognition Systems”, in Proc. of INTERSPEECH
2009, Brighton, UK, 540-543, 2009.

[31] Cosi, P., Hosom, J.P., “High Performance General Purpose Phonetic
Recognition for Italian”, in Proc. Of ICSLP 2000, Beijing, 527-530,
2000.

[32] Cosi, P., Nicolao, M., Paci, G., Sommavilla, G., Tesser, F., “Comparing
Open Source ASR Toolkits on Italian Children Speech” in Proc. of
WOCCI 2014 – Workshop on Child Computer Interaction, Satellite
Event of INTERSPEECH 2014, Singapore, September 19, 2014.

[33] Huang, J.-T., Hasegawa-Johnson, M., “Semi-Supervised Ttraining of
Gaussian Mixture Models by Conditional Entropy Minimization,” in
Proceedings. of INTERSPEECH 2010, 1353–1356.

[34] Povey D., Burget L. et al., “The subspace Gaussian mixture model-A
structured model for speech recognition,” Computer Speech &
Language, vol. 25, no. 2, pp. 404–439, April 2011.

